
850   BMJ | 17 april 2010 | VoluMe 340

research methods  
& reporting

In 1991, Yusuf et al12 discussed principles of analysing 
and interpreting subgroup effects, and stated that quali‑
tative interactions (that is, when treatment is beneficial 
in one subgroup but harmful in another) are rare. They 
advocated a priori specification of subgroup hypotheses, 
completion of a small number of subgroup analyses, and 
use of an interaction test for analysing subgroup effects. 
In the subsequent year, Oxman and Guyatt13 suggested 
seven criteria to guide inferences about the credibility 
of subgroup analyses. The greater the extent to which 
these criteria are met, the more plausible the putative 
subgroup effect is.

Since 1992, these seven criteria have been widely used 
to assess hypothesised subgroup effects,14‑23 and have 
undergone only minimal cosmetic revisions.4 After years 
of use of the 1992 criteria, we had begun to perceive limi‑
tations. These limitations became vivid when deciding on 
the credibility of a subgroup hypothesis of a large multi‑
centre randomised trial.24 On the basis of this experience, 
a review of published methodological articles address‑
ing subgroup analyses, and consultation with  clinicians 
and epidemiologist colleagues, we identified four new 
criteria that could further aid differentiation between 
spurious and real subgroup effects. We now believe that 
failure to consider these criteria could result in mislead‑
ing inferences about subgroup hypotheses. In this article, 
we describe these new criteria, use real‑world examples 
to show how they influence the strength of inference of 
subgroup hypotheses, and discuss their implications. 
Finally, we propose a re‑structured checklist of items 
addressing study design, analysis, and context.

relative versus absolute effect in subgroup analyses
A crucial issue in subgroup analyses is that the effects 
should be examined with relative rather than absolute 
measures. By contrast with relative effects, which in most 
situations remain constant across varying baseline risks, 
absolute risk reductions will typically vary with baseline 
risk.

For example, consider the effect of statin therapy on 
major coronary events (that is, non‑fatal myocardial 
 infarction and coronary heart disease death) in patients 
with varying coronary risks. A 45 year old non‑smoking 
woman without a family history of heart disease and 
without diabetes presents with a raised serum cholesterol 
(>5.2 mmol/L and a blood pressure of 130/85 mm Hg. 
Her risk of major coronary events in the next decade is 

Subgroup analyses in randomised controlled trials (RCTs) 
or in meta‑analyses of RCTs examine whether treatment 
effects vary according to patient group, way of giving 
an intervention, or approach to measuring an outcome. 
Subgroup analyses are common and often associated 
with claims of difference of treatment effects between 
subgroups—termed “subgroup effect”, “effect modifica‑
tion”, or “interaction between a subgroup variable and 
treatment”.1‑3 A difference in effect between subgroups, 
if true, is likely to have important implications for clinical 
practice and policy making. Many subgroup claims are, 
however, subsequently shown to be false.4 Thus, investi‑
gators, clinicians, and policy makers face the challenge of 
whether or not to believe apparent differences in effect.

Debates about subgroup effects may be framed in terms 
of absolute acceptance or rejection. For instance, in an 
intense academic debate,5‑11 one camp maintained that 
effects of propranolol on death differed in two groups 
of study centres, whereas the other remained highly 
sceptical. This “yes” versus “no” polarised approach is 
undesirable and destructive, mainly because it ignores 
the uncertainty that is inevitably part of such judgments. 
An approach that is more productive and more realistic 
is to place the likelihood that a subgroup effect is real 
on a continuum from “highly plausible” to “extremely 
unlikely”, possibly by using a visual analogue scale. The 
question is then a decision of where on this continuum a 
putative subgroup effect lies.

How can we tell the difference between 
spurious and real subgroup effects? This 
article identifies new criteria and proposes 
a checklist for judging the credibility of 
subgroup analyses
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summary points

Seven existing criteria help clinicians assess the credibility 
of putative subgroup effects on a continuum from “highly 
plausible” to “extremely unlikely”
We suggest four additional criteria: subgroup definition on 
the basis of baseline characteristics, independence of the 
subgroup effect, a priori specification of the direction of the 
subgroup effect, and consistency across related outcomes
We propose a re-structured checklist of items addressing study 
design, analysis, and context
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5%. Compare this woman to a 65 year old smoking male 
with a family history of heart diseases and diabetes, pre‑
senting with a raised serum cholesterol (> 6.2 mmol/l), 
and blood pressure of 160/90 mm Hg. His risk of major 
coronary events is 50%.

A meta‑analysis showed that statin therapy could 
reduce the relative risk of major coronary events by 
29.2%.25 This relative effect was consistent across sub‑
groups, including the determinants of coronary risk 
discussed in the previous paragraph. Because of the 
constant reduction in relative risk across subgroups 
(that is, we are confident that there is no subgroup effect 
for the relative effect measure), we can infer a reduction 
in absolute risk of major coronary events by 1.5% (from 
5% to 3.5%) in the first patient and 14.6% (from 50% 
to 35.4%) in the second patient. If we were consider‑
ing absolute risk reduction, an evident subgroup effect 
would exist (low risk patients, such as our female patient, 
have an absolute risk reduction of 1.5%, whereas high 
risk patients, such as our male patient, an absolute risk 
reduction of 14.6%).

This example shows how subgroup effects are often 
present when using the absolute risk reduction, but 
rarely present when using a relative effect measure. 
Indeed, in the presence of known prognostic factors 
that allow definition of groups at varying risk, if no sub‑
group effect is associated with these factors for relative 
measures of effect, a subgroup effect for absolute meas‑
ures must exist. Our subsequent discussion, therefore, 
focuses exclusively on putative subgroup differences in 
relative effects.

the original seven criteria for subgroup analyses
The box shows the seven 1992 criteria,13 in a re‑struc‑
tured checklist addressing design, analysis, and context 
of subgroup analyses in this paper. Inferences about 

subgroup effects are stronger, if, at the design stage, the 
comparison is made within rather than between studies, 
the subgroup hypothesis is specified a priori, and a small 
number of hypotheses are tested; if, in the analysis, the 
test for interaction between treatment and a subgroup 
variable (for example, age, sex, disease severity) suggests 
that chance is an unlikely explanation for apparent dif‑
ferences; and if, on the basis of the context, the differ‑
ence in effect between subgroup categories is large and 
consistent across studies, and indirect evidence exists to 
support the difference (biological rationale).

new criteria to judge the credibility of  
subgroup effects
1 is the subgroup variable a characteristic measured at 
baseline or after randomisation?
Subgroups can be defined according to characteristics 
measured at baseline or after randomisation. Subgroups 
defined according to post‑randomisation characteristics 
might be influenced by tested interventions; that is, the 
apparent difference of treatment effect between sub‑
groups can be explained by the intervention itself, or by 
differing prognostic characteristics in sub‑groups that 
emerge after randomisation, rather than by the subgroup 
characteristic itself. Thus, the credibility of subgroup 
hypotheses based on post‑randomisation characteristics 
is severely compromised, and can be rejected simply on 
this criterion.

For instance, in a randomised trial of 1200 critically 
ill patients,26 intensive insulin therapy, compared with 
conventional therapy, did not significantly reduce all‑
cause hospital mortality (37.3% v 40.0%, P=0.33). In 
767 patients who stayed in the intensive care unit (ICU) 
for at least 3 days, the intensive insulin therapy group 
had a lower all‑cause hospital mortality (43.0% v 52.5%, 
P=0.009), whereas in 433 patients who stayed in the 
ICU for less than three days, intensive therapy seemed 
to increase all‑cause hospital mortality (26.5% v 18.9%, 
P=0.05). Because the subgroups were not selected on the 
basis of characteristics at baseline, the most likely expla‑
nation of the results is not that insulin therapy is harmful 
in those destined to stay in ICU for less than 3 days and 
beneficial in those destined to stay for more than three 
days, but rather that an effect of treatment was to cre‑
ate prognostic imbalance between groups in those who 
ultimately stayed less than three days or at least three 
days. Such post‑randomisation subgroup analyses have 
very low credibility—in most cases, they can be readily 
dismissed.

2 Was the direction of the subgroup effect specified a 
priori?
Even if specified a priori, a putative subgroup effect is 
unlikely to be compelling if the investigator has little idea 
of the direction of the effect. A subgroup effect consistent 
with the pre-specified direction will increase the cred‑
ibility of a subgroup analysis; failure to specify the direc‑
tion—or worse yet, getting the direction wrong—weakens 
the case for a real underlying subgroup effect.

Users should look for explicit statements of a priori 
specification of subgroup hypothesis and subgroup 

Criteria to assess the credibility of subgroup analyses

Design
Is the subgroup variable a characteristic measured at •	
baseline or after randomisation?*
Is the effect suggested by comparisons within rather than •	
between studies?
Was the hypothesis specified a priori?•	
Was the direction of the subgroup effect specified a •	
priori*
Was the subgroup effect one of a small number of •	
hypothesised effects tested?

Analysis
Does the interaction test suggest a low likelihood that •	
chance explains the apparent subgroup effect?
Is the significant subgroup effect independent?*•	

Context
Is the size of the subgroup effect large?•	
Is the interaction consistent across studies?•	
Is the interaction consistent across closely related •	
outcomes within the study?*
Is there indirect evidence that supports the hypothesised •	
interaction (biological rationale)?

*New criteria.
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direction in the primary study reports. In view of emerg‑
ing evidence of differences between protocols and study 
reports,27 statements about what was included in regis‑
tered or publicly available protocols finalised before the 
study or systematic review are desirable.

For instance, Russell et al28 compared the effect of 
vasopressin versus norepinephrine infusion on 28‑day 
mortality in a randomised trial of 778 patients with sep‑
tic shock. As the primary subgroup analysis, the authors 
hypothesised a priori that the benefit of vasopressin over 
norepinephrine would be larger in patients with more 
severe septic shock. It turned out, however, that the ben‑
efit of vasopressin seemed to be greater in the patients 
with less severe septic shock (RR 1.04 in more severe v 
0.74 in less severe septic shock, interaction P=0.10). The 
investigators’ failure to correctly identify the direction of 
the subgroup effect appreciably weakens any inference 
that vasopressin is superior to norepinephrine in the less 
severely ill patients.

3 is the significant subgroup effect independent?
When examining subgroup hypotheses, one must 
address the likelihood that the differences in effects 
can be explained by chance. The statistical approach 
that addresses this issue is called a test for interaction 
(the interaction meaning that the treatment effect dif‑
fers across subgroup categories). The null hypothesis 
of the test for interaction is that no difference exists in 
the underlying true effect between subgroup categories. 
The lower the P value, the less likely it is that chance 
explains the apparent subgroup effect. Inevitably, the 
choice of a threshold for the P value involves subjective 
judgment. Rather than use of a threshold, a preferable 
way of assessing the P value is that as it gets smaller, 
the subgroup hypothesis becomes increasingly credible: 
we can be sceptical of any hypothesis with a P value of 
greater than 0.1, begin to consider the hypothesis if the 
P value is between 0.1 and 0.01, and take the hypothesis 
seriously when P values reach 0.001 or less.

When testing multiple hypotheses in a single study, 
the analyses might yield more than one apparently 
significant interaction. These significant interactions 
might, however, be associated with each other, and thus 
explained by a common factor. For instance, in a meta‑
analysis examining the effect of aspirin on the preven‑
tion of cardiovascular events, aspirin reduced the risk 
of stroke in women, whereas it had no apparent effect in 
men.29 However, the men were generally younger than 
the women, suggesting that age, rather than sex, might 
explain the interaction.30

Expressing this in general terms, in a particular anal‑
ysis, treatment effects apparently differ according to 
patients’ status on variables A and B. A and B are statisti‑
cally associated with each other. The difference of effects 
between patients in different categories with respect to 
A might, therefore, be explained by B (that is, the appar‑
ent effects of A on the size of treatment effect are due to 
confounding with B).

Another example comes from a trial of reamed ver‑
sus unreamed nailing of tibial fractures.24 Reamed and 
unreamed nailing produced no significant difference in 

Fig 1 | Effect of reamed v unreamed nailing on re-operation in patients with fracture: a priori and 
post-hoc subgroup analyses. First point estimate and confidence interval indicates main effect. 
Subsequent pairs of point estimates and confidence intervals indicate effect of reamed v 
unreamed nailing on re-operation in categories of 12 subgroup variables. *Subgroup analyses 
done post hoc. Subgroup analysis by Tscherne type included patients with closed fracture 
only, and analysis by Gustilo type included open fracture only. In our analysis of significant and 
non-significant interactions, these two interactions were not included in regression model, 
resulting in ten interaction terms included in model

Reamed v unreamed

Open v closed fracture

  Open

  Closed

Tscherne 0/1 v Tscherne 2/3

  Tscherne 2/3

  Tscherne 0/1

Custilo I/II v Custilo IIIa/b

  Custilo IIIa/b

  Custilo I/II

Isolated v multiple fracture

  Isolated

  Multiple

AO classification A/B v C

  Type C

  Type A/B

Consultant v fellow/resident

  Consultant

  Fellow/resident

Fracture gap

  No gap

  Any gap

Age (years)*

  ≤60

  >60

Sex*

  Male

  Female

Use of anti-coagulant*

  Yes

  No

Location of tibial shaft*

  Middle

  Proximal or distal

Smoking status*

  Current

  Other

0.92 (0.74 to 1.14)

1.27 (0.91 to 1.78)

0.67 (0.47 to 0.96)

0.88 (0.40 to 1.94)

0.68 (0.45 to 1.01)

1.24 (0.72 to 2.12)

1.17 (0.74 to 1.83)

0.93 (0.68 to 1.28)

0.85 (0.57 to 1.27)

0.99 (0.53 to 1.88)

0.88 (0.68 to 1.14)

0.80 (0.54 to 1.18)

0.98 (0.71 to 1.32)

0.89 (0.68 to 1.16)

0.86 (0.48 to 1.53)

0.94 (0.73 to 1.21)

0.74 (0.31 to 1.76)

0.86 (0.66 to 1.12)

1.11 (0.63 to 1.95)

0.94 (0.47 to 1.86)

0.89 (0.69 to 1.16)

0.94 (0.72 to 1.24)

0.85 (0.48 to 1.51)

1.56 (1.04 to 2.36)

0.68 (0.50 to 0.92)

N/A

0.011

0.55

0.87

0.71
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0.42
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0.61
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0.89
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the rate of re‑operation (RR 0.92, 95% CI 0.74 to 1.14, fig 
1). Analysis of seven a priori hypotheses suggested that 
reamed nailing had a lower re‑operation rate in closed 
fractures (RR 0.64, 95% CI 0.47 to 0.96) while resulted 
in a higher re‑operation rate in open fractures (RR 1.27, 
95% CI 0.91 to 1.78, interaction P= 0.011, fig 1). We 
subsequently used the trial data to explore five additional 
hypotheses, one of which suggested that reamed nailing 
was superior in current smokers (RR 0.68, 95% CI 0.50 
to 0.92) and unreamed nailing better in others (that is, 
ex‑smokers and lifetime non‑smokers) (RR 1.56, 95% CI 
1.04 to 2.36, interaction P=0.001, fig 1).

We wondered if the apparently significant difference 
in treatment effect between smokers and non‑smokers 
could be explained by fracture type (open v closed). In 
other words, one possibility was that the reason for the 
apparent smoking effect was that smokers tended to 
have open fractures and others tended to have closed 
fractures. In this case, the apparent association between 
preferred procedure (reamed or unreamed nailing) and 
smoking status might actually be due to confounding 
between smoking and fracture type (open and closed). 
To check for the independence of the interaction effect 
of smoking with procedure (reamed v unreamed), we 
included the  interaction terms of treatment with smoking 
and treatment with fracture type in the same regression 
model. The analysis showed that the smoking interaction 
remained significant (P changed from 0.001 to 0.006) 
after adjusting for the interaction of fracture type with 
treatment. This suggests that the apparent smoking inter‑
action cannot be explained by an association between 
smoking status and open versus closed fractures.

An additional check for independence of the asso‑
ciation could include all significant and non‑significant 
interactions in the regression model. Persisting signifi‑
cance of interaction terms strengthens the subgroup 

effect inference. In our analysis, this additional regres‑
sion including both significant and non‑significant 
hypothesised interactions (that is, the ten interactions 
between patient characteristics with treatment in fig 
1) showed a persistent smoking interaction (P=0.008), 
thus providing further support for the independence of 
the smoking subgroup effect. A note of caution: adjust‑
ment for significant and non‑significant interaction terms 
might be compromised by a limited sample size and small 
number of events,31 providing a further rationale for pre‑
specifying a limited number of important interactions.

4 is the interaction consistent across closely related 
outcomes within the study?
If a subgroup effect is real, it is likely to manifest itself 
across all closely related outcomes. For example, in a ran‑
domised trial of 1692 patients with refractory non‑small‑
cell lung cancer, Thatcher et al32 compared the effect of 
gefitinib versus placebo on survival. The primary analysis 
showed a trend for a survival benefit with gefitinib over 
placebo (hazard ratio (HR) 0.89, 95% CI 0.77 to 1.02, 
P=0.087). Tests of a priori hypotheses indicated differen‑
tial effects on survival in non‑smokers (HR 0.67, 95% CI 
0.49 to 0.92) and smokers (HR 0.92, 95% CI 0.79 to 1.06; 
interaction P=0.07). Secondary analyses on time to treat‑
ment failure showed similar differences of effects in non‑
smokers (HR 0.55, 95% CI 0.42 to 0.72) versus smokers 
(HR 0.89, 95% CI 0.78 to 1.01, interaction P=0.0015). 
The consistency of the subgroup effect across outcomes 
enhances its credibility.

In the trial of reamed versus unreamed nailing of 
tibial fractures,24 unreamed nailing apparently reduced 
re‑operations in current smokers while reamed nailing 
reduced re‑operations in other patients (ex‑smokers 
and lifetime non‑smokers) (fig 1). To examine whether 
the difference existed in other outcomes, we tested the 
interactions between treatment and smoking status on 
quality of life measured by the Health Utility Index and 
short form‑36 (fig 2). Results consistently suggested the 
superiority of unreamed nailing over reamed nailing in 
current smoking patients, and no or a small difference 
between unreamed and reamed nailing in other patients. 
This result strengthens the inference about an interaction 
with type of nailing and smoking status.

discussion
Clinical and policy decision making always involves 
uncertainty. It is unlikely that a subgroup claim will meet 
either all or none of our criteria—in almost all instances, 
a subgroup claim will meet some but not all the criteria. 
Treating the likelihood that a subgroup effect is real as 
a continuum reflects the nature of the uncertainty. Judg‑
ment about its credibility will depend on how strongly 
clinicians and policy makers believe the subgroup effect 
is real. In other words, they will judge considering each 
criterion: the greater the extent to which criteria are met, 
the more likely the subgroup effect is real. When sum‑
marising the strength of the subgroup inferences, one 
can imagine—and possibly apply—a visual analogue 
scale with anchors of “highly plausible” and “extremely 
unlikely”.

Fig 2 | Effect of reamed v unreamed nailing on Health Utility 
Index (HUI, 2a) and Short Form-36 (SF-36, 2b) in subgroups 
of smoking and other tibial fracture patients. PCS=physical 
component summary. MCS=mental component summary
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For clinical practice and policy decision making, dif‑
ferences in prognosis, and the differences in absolute risk 
reduction that are associated with differences in progno‑
sis, are far more important than relative subgroup effects 
for two reasons. First, identifiable and substantial dif‑
ferences in prognosis are fairly common, and one can 
be confident that potentially important differences in 
absolute effect across prognostic subgroups will occur. 
True subgroup differences in relative effects are, by con‑
trast, fairly uncommon. Second, even if true differences 
in the effects of treatment across subgroups exist, those 
differences might not be large enough to mandate dif‑
ferences in management across those subgroups. This 
might be the case, for instance, if treatment is benefi‑
cial in all patients, but the size of treatment effect dif‑
fers between subgroups. Assuming constant relative risk 
reductions, and using baseline risk to calculate absolute 
risk reductions for patient groups associated with vali‑
dated differentiating prognostic characteristics, pro‑
vides an optimum approach to trading off desirable and 
un desirable treatment results.33

We re‑structured the checklist of items including the 
seven original and the four new criteria (table 1). This 
checklist is organised according to the design, analysis, 
and context of subgroup analysis.

The importance of these criteria varies, but the relative 
weight that should be applied to each criterion remains 
uncertain. If a credible weighting scheme could be estab‑
lished it might improve the efficiency and accuracy of 
judgments. One approach would be to develop a formal 
measurement instrument, allocating a specific weight to 
each criterion, and to validate the instrument by apply‑
ing it to subgroup analyses that have been established to 
be real or spurious.
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