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these are: clinical processes (encompassing treatments 
such as drugs, devices, procedures, “talking” therapy, 
complementary therapy, and so on); targeted processes 
(those aimed at improving particular clinical processes, 
such as training in the use of a device, or a decision rule 
built into a computer system); and generic processes 
(for example, the human resource policy adopted by an 
organisation).

When an intervention is designed, the level at which 
it first affects this chain should be clarified along with its 
plausible effects.6 There are four levels in the extended 

There is broad consensus that clinical interventions 
should be compared in randomised trials measuring 
patient outcomes. However, methods for evaluation of 
policy and service interventions remain contested. This 
article considers one aspect of this complex issue—the 
selection of the primary end point (the end point used 
to determine sample size and given most weight in the 
interpretation of results). Other methodological issues 
affecting the design and interpretation of evaluations of 
policy and service interventions (including attributing 
effect to cause) have been discussed elsewhere,1 and we 
will consider them only in so far as they may affect selec‑
tion of the primary end point. Our analysis begins with a 
classification of policy and service interventions based 
on an extended version of Donabedian’s causal chain.

Classification of policy and service delivery 
interventions
Avedis Donabedian conceptualised a chain linking 
structure, process, and outcome.2 The classification 
we propose is based on a model in which the process 
level is divided into three further categories or sublev‑
els as shown in fig 1.3‑5 Starting closest to the patient 

Evaluating policy and service interventions: framework to 
guide selection and interpretation of study end points
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The effect of many cost effective policy and 
service interventions cannot be detected at the 
level of the patient. This new framework could 
help improve the design (especially choice 
of primary end point) and interpretation of 
evaluative studies 

Fig 1 | Modified Donabedian causal chain. Interventions at structural (policy) and generic service level can achieve effects through 
intervening variables (such as motivation and staff-patient contact time) further down the chain. For example, an intervention at (x) 
produces effects (good or bad) downstream at (a), (b), (c), and (d)
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SUMMARY POINTS
Management interventions may be divided into two 
categories; targeted service interventions with narrow 
effects, and generic service interventions that (like policy 
interventions) have diffuse effects
Measurement of clinical processes rather than patient 
outcomes may be more cost effective in evaluations of 
targeted service interventions
Clinical processes are not usually suitable primary 
end points for policy and generic service interventions 
because the effects at this level are too diffuse
Multiple clinical processes are consolidated on a small 
number of outcomes, which are the default primary end 
point for policy and generic service interventions 
When the policy or generic service intervention is 
inexpensive, cost effective and plausible outcomes may 
be undetectable at the patient level
In such cases the effects of the intervention can still be 
studied at process levels further to the left (upstream) in 
an extended version of Donabedian’s causal chain
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Donabedian chain at which it is possible to intervene. 
Starting closest to the patient these levels are:
• Clinical interventions—for example, use of clot 

busting drugs for thrombotic stroke
• Targeted (near patient) service interventions—for 

example, establishing a service to expedite 
administration of clot busting drugs for thrombotic 
stroke

• Generic (far patient) service interventions—for 
example, providing yearly appraisal for all staff)

• Structural (policy) interventions—for example, 
improving the nurse to patient ratio.
Evaluation of targeted and generic service interven‑

tions tends to be lumped together under portmanteau 
terms such as management research, service delivery 
and organisational research, or health services research. 
We shall show that, from a methodological point of 
view, generic service interventions have more in com‑
mon with policy interventions than with targeted service 
 interventions.

Assessing targeted service interventions
Clinical interventions have only one downstream level 
at which evidence of effectiveness may be observed—
patient outcomes. However, the effect of targeted service 
interventions can be assessed by using either clini‑
cal processes (for example, the proportion of eligible 
patients who receive timely thrombolysis) or outcomes 
(proportion of patients who recover from stroke). Select‑
ing a sample of sufficient size to measure changes in 
end points at both levels risks wasteful redundancy. If 
there is an established link between a clinical process 
and its corresponding outcome, then the least expensive 
option should be chosen. Costs are a function of sample 
size (number of participating centres and the number of 
patients sampled in each centre) and the cost of making 
each observation.

Changes in clinical outcome (such as mortality or 
infection rates) can never be bigger than changes in the 
clinical error rates on which they depend and are usually 
much smaller; it is rare for the risk of an adverse outcome 
to be wholly attributable to clinical error. Thus detection 
of changes in outcome requires larger, often much larger, 
samples than those needed to detect changes in the cor‑
responding clinical process. Figure 2 compares the sam‑
ple sizes for a standard simple before and after study 
designed to measure the effect of an intervention on 
compliance with a clinical standard (process study) and 
the risk of an associated adverse clinical outcome (out‑
come study). The sample size for the outcome study is 
about four times that of the corresponding process study 
even when the adverse outcome is 100% attributable to 
clinical error (that is, can arise only if the corresponding 
error has occurred, as in reaction to incompatible blood 
transfusion). The outcome study must be more than 200 
times larger than the process study if the attributable 
risk is 25% (as in failure to carry out timely thrombolysis 
therapy after thrombotic stroke). 

The actual numbers will depend on baseline rates of 
compliance and adverse outcome and the study design—
cluster studies with contemporaneous controls will 
require even larger samples than simple randomised 
controlled trials.7‑9 However, study costs are a function 
not only of the number of observations, but also of the 
costs of making each observation. Although outcomes 
such as mortality and rates of infection are often col‑
lected routinely, health service systems seldom carry the 
numerator (process failure) and denominator (oppor‑
tunity for failure) data required to calculate the rates 
of process failure.10 This information usually has to be 
obtained from case notes, bespoke data collection forms, 
or direct observation.11 The cost of reliably measuring 
failures in clinical process may therefore be consider‑
able, depending on the process concerned.12

There are thus competing forces at work when evaluat‑
ing a targeted service intervention; the generally higher 
cost of measuring clinical processes is in tension with 
the greater number of cases that must be sampled to 
measure outcomes with commensurate precision. The 
greater the size (in absolute terms) of the hypothesised 
effect on outcome and the more expensive the collection 
of data, the stronger the argument to rely on outcome 
measures. For example, an influential study to assess the 
effect of targeted processes to reduce infection associ‑
ated with central venous lines used bloodstream infec‑
tions as the outcome measure.13 Real time observations 
to assess the clinical processes that reduce infection 
risk would have been very expensive and substantial 
effects on the outcome (infection rates) were expected 
(and observed).13 However, as the signal (change in out‑
come due to intervention) diminishes in relation to the 
noise (changes in outcome due to uncontrolled sources 
of variation), a study based on process measurement will 
become more cost effective. Such was the case in Landri‑
gan’s study of the effects of fatigue on the quality of care 
delivered by medical interns in the intensive care unit, 
which used direct observation of clinical processes.14

The above argument is predicated on circumstances 

Fig 2 | Specimen sample sizes for a simple before and 
after study or randomised controlled trial to detect an 
improvement in process compliance using process and 
outcome measures with conventional 80% power and 5% 
significance levels. At baseline, compliance with the targeted 
clinical process is 50% and the rate of adverse outcomes is 
20%. The numbers needed for the outcome study increase 
as the percentage of outcome risk attributable to non-
compliance with the process (attributable risk) decreases
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where the clinical process of interest is a valid surrogate 
(proxy) for the relevant patient outcome. If this is not 
the case, the link between clinical process and patient 
outcome should first be confirmed—for example, with a 
double masked randomised controlled trial. However, 
the link between process and outcome cannot always be 
established robustly, particularly when the outcome in 
question is the egregious consequences of a rare clinical 
process failure—for example, transfusion of incompat‑
ible blood, oesophageal intubation, or intrathecal injec‑
tion of vincristine. 

Policy and generic service interventions
Generic service interventions have the potential to affect 
targeted processes, clinical processes, and outcomes. 
They may affect clinical processes directly through 
targeted processes or indirectly through intervening 
variables (such as morale, sickness absence, culture, 
knowledge, time spent with each patient).15 Figure 1 
shows that there are four downstream levels at which 
effects may be observed. Policy interventions (such as 
building a new hospital, increasing reimbursement 
rates, or conferring ‘teaching’ status) can exert effects 
through five levels.

Narrow versus diffuse effects
The further to the left an intervention is applied in the 
causal chain, the greater the number of downstream 
processes that may be affected. For example, a targeted 
service intervention to prevent misconnection of oxygen 
delivery pipes in the operating theatre would affect only 
one clinical  process—gas delivery. This is a narrow or 
tightly coupled effect. However, a generic service inter‑
vention (such as applying a system of appraisal for all 
staff) or a policy level intervention (such as increasing 
resources to improve the nurse to patient ratio) has the 
potential to affect myriad clinical processes across an 
institution—a diffuse effect. Nevertheless, these clini‑
cal processes converge on outcomes that can be placed 
in a limited number of discrete, identifiable groups (fig 
3). For example, mortality, quality of life scores, patient 
satisfaction, and numbers treated are the final common 

pathway for hundreds, if not thousands, of individual 
clinical processes.

Selecting end points 
It may be impractical to measure the effectiveness of 
an intervention with diffuse effects by observing hun‑
dreds or thousands of downstream clinical processes. 
For example, Donchin and colleagues estimated that 
patients in  intensive care units experience a mean of 
178 clinical processes every day.16 The hospital as a 
whole would provide many thousands of actions that 
could be affected by a change such as the ratio of doc‑
tors to patients. The effect on each clinical process might 
be so small that impracticably large samples would be 
required to avoid high probabilities (or the near cer‑
tainty) of false null results. It would be logistically taxing 
to enumerate compliance with all (or even a meaning‑
ful proportion) of the clinical processes that might be 
affected downstream. 

Given limited resources, it makes more sense to study 
the effects of such interventions by using outcomes on 
which large numbers of processes converge and which 
often can be measured at low cost. Patient outcomes 
also encapsulate the net effect of generic interventions 
on many individual processes, some of which may be 
negatively affected; various positive and negative effects 
are consolidated among a limited number of outcomes. 
However, this still leaves the question of the sample size 
required to investigate such outcomes. 

Cost effectiveness of studies using patient level  
end points
Rare problems and small effect sizes
Sometimes it is not cost effective, or logistically possible, 
to measure the effectiveness of policy or service delivery 
interventions at either the clinical process or patient out‑
come level. In the case of targeted service delivery this 
situation arises in the context of rare incidents, such 
as transfusion of incompatible blood. For policy and 
generic service interventions the problem arises when 

Fig 3 | Interventions applied towards the far left of an 
extended causal chain can have diffuse effects on clinical 
processes but show convergence on outcomes
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Fig 4 | Sample size needed in a simple before and after study 
to detect reductions in mortality from a baseline of 10% 
using conventional 80% power and 5% significance levels. 
Each death avoided is assumed to result in a patient benefit 
of five years of healthy life, which is used to generate the 
cost ceiling for the intervention using a threshold of £20 000 
per quality adjusted life year

Mortality reduction (%)
(cost ceiling per patient)

To
ta

l s
am

pl
e 

si
ze

1
(£1000)

0.02
(£200)

2
(£2000)

1000

10 000

100 000

10 000 000

1 000 000
700 000



718   BMJ | 2 OCTOBER 2010 | VOLUME 341

RESEARCH METHODS & REPORTING

the cost of the intervention is small relative to the mag‑
nitude of the plausible effect size.

In England and Wales, the National Institute for 
Health and Clinical Excellence (NICE), uses a heuristic 
maximum of between £20 000 (€24 000; $31 000) and 
£30 000 for a healthy life year.17 An intervention, such as 
a clinical computing system costing £10m a year might 
sound expensive, but would average £200 per patient in 
a hospital with 50 000 admissions a year. It would have 
to save only around two lives (of five years mean dura‑
tion in good health) per 1000 patients admitted to be 
cost effective. In such a case the cost per life year saved 
is calculated as:

Cost per life year saved  =

= =

Cost per patient x No of patients

No of lives saved x
Mean duration of a saved life

£200 x 1000
£20 000

2 x 5

(Discounting at 3.5% a year increases the cost slightly to 
£21 500, which is still below the NICE threshold.) 

If we assume a baseline mortality of 10%, as in fig 4, 
700 000 patients would be required to detect a change 
of two lives per 1000 patients in a simple before and 
after study. Furthermore it would be risky to make a 
causal inference on so small a difference (0.2 percent‑
age points) from a study with no contemporaneous 
controls—moderate biases are more important when 
measured  differences are small. Even more patients 
would be needed to conduct a more valid cluster study 
incorporating a sample of control hospitals that were not 
exposed to the intervention.

The above estimate of effect (two lives saved per 1000 
admissions) is not unduly pessimistic. Many people were 
shocked to hear that one in 400 inpatients died as a 
result of deficiencies in their care in the famous  Harvard 
 malpractice study.18 If this could be halved (arguably 
an ambitious target), hospital mortality would decline 
by 0.125 percentage points (that is, by less than 2 in 
1000). Figure 4 shows that the rate at which sample 
size increases as a function of diminishing effect size is 
such that detecting plausible effects of an intervention 
on death rates may be not only expensive but logistically 
impossible.19

Modelling cost effectiveness
Sometimes it is difficult to decide whether it would be 
cost effective to carry out a study that is powered on 
the basis of patient level outcomes (clinical  processes 
or patient outcomes). In many cases, the decision 
can be informed by modelling effectiveness and cost 
 effectiveness.

Effectiveness is modelled by mapping the pathway 
through which the intervention is hypothesised to work. 
For instance, the plausible effectiveness of a programme 
of rotating ward closures was based on observed rates 
of bacterial recontamination of cleaned surfaces and 
expert opinion on plausible consequences for hospital 
acquired infection.20

Cost effectiveness can then be modelled by offset‑
ting putative benefits against costs. A simple “back 
of the envelope” calculation may be informative.21 
In the above example, it turned out that the costs 
 (particularly  opportunity costs of ward closure) were 
not  commensurate with even the most optimistic expert 
estimates of benefit.20 More often simple models will 
reveal an “inconvenient truth” that cost effective effects 
on patient level outcomes are plausible but too small to 
be easily detectable, as in the example of the hospital 
computer system above. However, in some cases, par‑
ticularly in developing country contexts or when out‑
comes other than mortality are salient, the effect sizes 
may allow cost effective measurement. In these cases 
we advocate the use of bayesian value of information 
modelling, which has been used in health technology 
assessment,22‑24 to investigate the cost effectiveness of 
proposed studies and to select the sample size that offers 
best value for money.

Alternatives to measuring effects at patient level
Situations where interventions may be cost effective, but 
are unlikely to produce measurable effects on patient 
level end points, raise the question of what is to be done 
in such cases. We take our cue from Walter Charleton, 
who in the 17th century, said that, “The ‘reasonable 
man’ will not require demonstrations or proofs that 
‘exclude all dubiosity, and compel assent,’ but will 
accept moral and physical proofs that are the best that 
may be gained.”25 When end points at the patient level 
are unlikely to be sensitive to the intervention, evalua‑
tions must turn on theory and on other types of observa‑
tion. These observations will be components of a general 
framework for all evaluations1  3  4  6  15 and include out‑
come of previous studies of similar interventions, results 
of preimplementation evaluations (alpha testing),3 and 
observations upstream in the extended Donabedian 
chain. These upstream observations include the fidelity 
of uptake of the intervention15 and effects on intervening 
variables,15 and could require the synthesis of quantita‑
tive and qualitative data.4 

Clinical processes and outcome can still be measured 
even though they are not the primary end point. This 
will determine whether the observed effect is larger than 
expected and make data available for possible future 
systematic reviews. However, these patient level end 
points will not be used to determine sample size. Care 
must also be taken not to misinterpret a null result (no 
evidence of effect) as evidence of no effect since studies 
that examine upstream effects are not powered to detect 
changes in patient level end points.

Consider for example, the effect of an online interven‑
tion package to improve the general knowledge and atti‑
tudes of all clinical staff towards patient safety. Here it 
might be asking too much to expect to observe improve‑
ments in clinical processes or outcomes. The finding 
that staff attended the educational events, reported 
positively on the experience, and had improved scores 
on a reliable patient safety culture tool, may provide 
sufficient encouragement to continue the intervention, 
especially against a theoretical backdrop linking culture 
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to safety built up from studies in many healthcare and 
non‑healthcare  settings.26

Discussion
The classification we propose is based on a decon‑
structed version of Donabedian’s process level and does 
not readily map on to other classifications such as safety 
versus quality. The insight derived from the distinction 
between targeted and generic service interventions 
relates to the downstream effects of the intervention—
targeted interventions with narrow effects versus policy 
and generic service interventions with diffuse effects.

We have described the causal chain as operating from 
left to right. However, bidirectional flow is plausible in 
some circumstances—a specific targeted intervention 
may produce upstream (feedback) effects. These in turn 
could bring about downstream changes (feed‑forward) 
in a related activity. For example, introduction of clini‑
cal guidelines for asthma care in general practice may 
sensitise clinicians to the use of guidelines in general 
and thereby produce improvements in diabetes care.27 
This phenomenon is sometimes referred to as the “halo 
effect,”28 although such spillover effects can also be 
harmful—for example, incentives to reduce waiting 
times for investigation of possible cancer may deflect 
attention away from other important diseases. The 
corollary of potential spillover effects when targeted 
specific interventions are implemented is that the end 
points observed may need to be widened to take account 
of plausible positive and negative effects in related 
pr actices.

Multicomponent service interventions may comprise 
both generic and targeted elements, such as the Health 
Foundation’s Safer Patients Initiative, which seeks to 
promote leadership and safety culture while strength‑
ening specific practices by, for instance, promulgating 
evidence based guidelines.29 An evaluation in this case 
should consist of observations relevant to both generic 
elements (such as measurements of effects on interven‑
ing variables and perhaps outcomes) and the specific 
components (where targeted clinical processes are 
r elevant).

Surrogate outcomes and publication bias
The observation that it may not be possible to detect 
worthwhile effects at the patient level inevitably 
places greater weight on upstream end points, which 
become surrogates for patient outcomes. It is therefore 
important to increase our knowledge of the construct 
validity of intervening variables such as culture, lead‑
ership, and morale. The literature correlating these 
upstream variables with patient outcomes is likely to 
be distorted by publication bias—an endemic problem 
in clinical epidemiology.30 Thus authors should con‑
sider using statistical methods that provide evidence 
of publication bias, as in a recent study of service inter‑
ventions to improve acute paediatric care in develop‑
ing countries.31 Readers should be aware that when 
they encounter strongly positive results, they may be 
sampling the most optimistic tail of a distribution of 
results, most of which is hidden from view. Suspicion 

that one may be dealing with an example of publication 
bias must be heightened if the results exceed the most 
optimistic of prior  expectations.

Bayesian methods and decision analysis
Our analysis has been couched, for the most part, in 
terms of primary end points and statistical methods for 
hypothesis testing. This is partly because these conform 
to contemporary methodological models in quantita‑
tive research and partly because they provide conven‑
ient “handles” to help describe the underlying ideas. 
These ideas would still be relevant under alternative 
models where, for example, multiple end points were 
weighted on a sliding scale according to their contribu‑
tion to a decision analysis model.32 Likewise, the rela‑
tion between interventions and effect size would be 
relevant when considering cost effective sample sizes 
in a bayesian model.24 Here changes in credible lim‑
its and the centre of updated probability distributions 
would be the relevant considerations, but it would still 
be necessary to think carefully about sample size, cost 
effectiveness, and the distinction between interventions 
with diffuse and narrow effects. Bayesian methods can 
also be used to integrate multiple observations (includ‑
ing qualitative data).33

Representational nature of the model
The model we present is more fine grained than 
 Donabedian’s original framework, but even so the 
 process level could have been divided into more than 
three sublevels; the underlying construct is, in all likeli‑
hood, a continuum. The nub of the argument is that the 
further to the left an intervention is applied, the greater 
the number of downstream end points that might be 
affected until a point is reached where there are too 
many to capture at the clinical processes level. How‑
ever, the effect on patient outcomes might be too small 
to detect, yet worth while, given an intervention that is 
inexpensive on a per patient basis. Our framework, like 
all representational models, is a “simplified view of the 
world to help us think about complex issues, but is not 
a true representation of the complexity itself.”34 Just as 
the map of the London  underground does not need to 
represent the geography of track and stations literally 
to be helpful, so we hope that our model will be useful 
for those who navigate the complex intellectual terrain 
of policy and service evaluation.
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CASE REPORT
A case of airway compromise

1 Angio-oedema secondary to use of an angiotensin converting enzyme 
(ACE) inhibitor (lisinopril).

2 Stop lisinopril; monitor the airway; administer high flow oxygen; 
give intravenous hydrocortisone 200 mg and chlorphenamine 10 
mg; inject adrenaline 0.5 mg (1:1000 concentration) intramuscularly 
with repeated doses if needed (5 ml of nebulised adrenaline (1:1000 
concentration could also be used), and surgical intervention if 
necessary.

3 Discontinue the ACE inhibitor and avoid angiotensin receptor blockers 
and direct renin inhibitors if possible.
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ANATOMY QUIZ
Barium swallow 
(anterior posterior 
view)
A  Right valleculum
B Right piriform recess/fossa
C  Spinal process C7
D  Aortic knuckle

STATISTICAL 
QUESTION

Confounding 
in case-control 
studies II
Answers a, b, c, and d 
are all true.

ON EXAMINATION QUIZ Abnormal calcium
Answer C is correct.


